generativeadversarialnetwork相关论文
配电变压器是电力系统的重要组成部分,其安全稳定运行至关重要.如果变压器发生故障,必须及时准确地诊断故障类型.为此,论文提出了......
为提升水下图像的增强效果,提出了一种基于金字塔注意力机制和生成对抗网络(GAN)的水下图像增强算法,该算法将生成对抗网络作为基......
提出一种基于深度学习的红外目标建模方法。将对抗与自编码相结合,设计了双重对抗自编码网络。利用训练后的网络,仅需输入类别标签......
针对水体对光的吸收和散射导致的水下图像细节模糊和颜色失真等问题,提出了一种基于多尺度生成对抗网络的水下图像增强算法。该算......
生成对抗网络(GAN)是解决图像数据获取困难的有效方法,但GAN在训练时难以稳定,生成的图像质量较差。基于此,提出了一种基于残差结......
为了解决单幅图像的去雾问题,提出一种新型端到端的网络,该网络利用改进的多尺度特征循环生成对抗网络。不同于以往的模型,所提的......
提出了一种应用于红外图像仿真的级联多尺度信息融合生成对抗网络,能由可见光图像估计对应的红外图像。针对可见光与红外图像特征......
传统的红外与可见光图像融方法将图像分解为多个频域分量后分别融合再相加,存在边缘模糊、对比度低等问题,为此提出了一种基于Tikh......
高光谱成像能够提供比普通RGB图像更全的光谱信息,在监测自然环境变化、农业植被土壤分类等具有广泛的应用。从单幅RGB图像重建高......
针对现存的低照度图像视觉效果差和图像质量低的问题,提出了一种基于级联残差生成对抗网络的低照度图像增强算法,该算法将构建的级......
针对现有高光谱图像生成式对抗网络(GAN)分类算法中存在不能充分提取光谱特征和空谱联合特征而导致高光谱图像分类精度降低的问题,......
提出一种可用于改进图像超分辨率重建质量的双判别器超分辨率重建网络(DDSRRN)。该网络在生成式对抗网络(GAN)的基础上增加一个判......
基于深度学习的单图像超分辨率重建方法已经比较完善,重建图像具有较高的客观评价值或具有较好的视觉效果,但是图像感知效果和客观......
针对小样本条件下深度学习缺陷检测算法识别率较低的问题,提出一种基于双通道生成对抗网络的数据增强方法。由全局鉴别层和局部鉴......